

Fade Mechanisms of Lithium & Manganese Rich Layered-Oxide Li-ion Cells

$xLi_2MnO_3 \bullet (1-x)LiMO_2$ (M=Ni, Co, Mn)

Kevin G. Gallagher, Donghan Kim, and Sun-Ho Kang *Chemical Sciences & Engineering Division Argonne National Laboratory*218th ECS Meeting – Las Vegas

Need for Higher Specific Energy Materials

- Improving the energy density for a PHEV-40 battery
- Standard NMC cathode: 150 mAh/g
 - Battery size: 50 L, 80 kg *
- Goal for Li & Mn rich oxides (LMR)
 LMR NMC: 285 mAh/g
 - Battery size: 44 L, 66 kg (313 Wh/L, 218 Wh/kg)*
 - ~ 14% and 22% increase in energy density

- LMR also reduces cost of active materials (less Co & Ni)
 - Standard NMC ~\$40/kg; 3.8 Ah/\$
 - LMR NMC ~\$25/kg; 11.4 Ah/\$
 - Reduce the cost of cathode material by 2/3

* Calculated using Argonne Battery Design Model

$xLi_2MnO_3 \bullet (1-x)LiMO_2$ (M=Mn,Ni,Co)

- Structural feature
 - Integration and interconnection of LiMO₂-like (rhombohedral) and Li₂MnO₃ (monoclinic) structures at atomic level (Abs #987, Aurbach et al.)
- Electrochemical feature

Implementing LMR NMC into full-cells

- High-capacity ANL-NMC material¹
 - Mildly fluorinated 0.5Li₂MnO₃•0.5LiNi_{0.44}Mn_{0.31}Co_{0.25}O₂
 - Alternatively, Li_{1.2}(Mn_{0.524}Ni_{0.176}Co_{0.1})F_yO_{2-y} (y~0.05)
- Previous half cell performance
 - High capacity (250 mAh/g at 22 °C, 295 mAh/g at 55 °C)
 - Good cycle efficiency
 - Good capacity retention
 - Limited rate capability
- Full-cell performance (???)

Fade mechanisms of Li & Mn rich layered oxides

Experimental details

- Cell configurations
 - Cathode: ANL-NMC
 - Anode: metallic lithium or graphite (MCMB 10-28 or Mag-10)
 - 1.2 M LiPF_6 in EC/EMC (3:7 wt), no additives
 - 2032 coin cell
 - All cycling data at least in duplicate
- Reference electrode studies use a "fixture cell" 32 cm² area
- Compare pristine to Li-Ni-PO₄ coating²
 - Sol-gel method, 5 mol %
 - Better rate capability (200 mAh/g at 1C)
 - Improved cycling efficiency

Room temperature full-cell cycling

- 2-4.6V @ C/15, 3hr CV
- Coated ANL-NMC shows less capacity fade with cycling
- Uncoated ANL-NMC shows unacceptable fade

55°C full-cell cycling

- Potential windows
 - 2-4.6V @ C/15, 3hr CV
 - 2-4.5V @ C/15
- Coated ANL-NMC shows less capacity fade with cycling
- Lowering high potential reduces fade for uncoated material

Change in voltage profile after cycling

- Electrode harvested from aged 55°C full cell
- Rebuilt in a half cell and tested at 22°C

Challenges indentified

- Capacity fade
 - Role of coating
 - Impact of high potential
 - Mechanism
- Power fade
 - Initial analysis of large impedance of ANL-NMC
- Voltage profile change
 - Source of change
 - Sources of acceleration
 - Mechanism

Origin of capacity fade

- Graphite electrode is likely candidate
- Verified by high temperature cycling of ANL-NMC half cells
- Both (un)coated ANL-NMC shows little capacity fade in ½ cell

Negative electrode capacity fade

- ICP/MS reveals difference in cation levels at harvested graphite
- Mn and Co dissolution is reduced by ~70 % for coated ANL-NMC
- Ion dissolution will be a challenge for ANL-NMC as it is with other Mn rich systems

Li_{1.2}(Mn_{0.524}Ni_{0.176}Co_{0.1})F_yO_{2-y}

µg_cation / g_cathode			
_	Mn	Co	Ni
Uncoated	804	65	241
Coated	288	17	195

2-4.5 V @ C/15, at 55 °C

Fade mechanisms of Li & Mn rich layered oxides

Initial impedance study

- Uncoated ANL-NMC dominates full-cell impedance
 - After activation 2-4.6V @ C/15, 3hr CV at 30 °C
 - Reference electrode cell, 100kHz 0.01Hz @ 3.75 V
- Frequency response suggests sluggish interfacial properties

Fade mechanisms of Li & Mn rich layered oxides

Initial impedance study

- Impedance before and after activation process
 - Uncoated ANL-NMC in Full cell @ 4.0 V, 100kHz-0.01Hz
 - Largest change in interfacial regime

Fade mechanisms of Li & Mn rich layered oxides

Voltage profile change during aging

- Voltage profile change
 - Maximum peak in dQ/dV discharge shifts from 3.2 to 2.9 V
 - Distinct changes in charge dQ/dV as well
 - No difference seen between coated and uncoated

2-4.6 V @ C/15, 3 hr CV at 55 °C w/ uncoated ANL-NMC

Cycling in different voltage windows

- Test cycling potential ranges (windows) of uncoated ANL-NMC
 - 5 cycles at 22°C, 2-4.6V, 3hr CV
 - 40 cycles at 55°C, 3.5-4.6 V or 2-4.3 V
 - 3 cycles at 22°C, 2-4.6V, 3hr CV
- Higher potential and temperature accelerate profile change

High potential hold

- 10 day 4.6 V hold, 2 cycles
 - Promote side reaction with electrolyte
 - Promote activation of Li₂MnO₃
- Change is not as significant as cycling

5th

20th

50th

65th

4

5

3

Cell Voltage (V)

Continuous cycles at 55 °C in ½ cell, uncoated

7.E-03

5.E-03

3.E-03

1.E-03

-1.E-03

-3.E-03

-5.E-03

-7.E-03

2

dQ/dV

Acceleration of voltage profile change

- Cycling induces profile change
 - Shuffling a deck of cards?
- Profile change accelerated by
 - Temperature
 - High potential cycling (low lithium concentrations in cathode)
- Change in crystallography is undetermined
 - XRD is not sensitive enough, XAS studies needed
 - What phase(s) are being formed?
 - What is the mechanism?

Summary

- Capacity fade
 - Ion dissolution from ANL-NMC aggravates graphite SEI growth
- Role of coating
 - Reduce dissolution of cations
 - Reduce side reaction with electrolyte
 - Stabilize Mn⁴⁺ ions with the presence of Ni^{4+/2+} in coating
 - Improves rate capability
- Voltage profile change
 - Accelerated by temperature and high potential cycling
 - Most likely not a side reaction with electrolyte
 - More fundamental analysis needed (**XAS**, etc)

Acknowledgements

- Support for this work is from DOE-EERE, Office of Vehicle Tech.
 - David Howell
 - Peter Faguy
- Dennis Dees, ANL
- Daniel Abraham, ANL

 The presentation has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357.